Abstract

BackgroundPhospholipids are important structural and signaling molecules in plant membranes. Some fluorescent dyes can stain general lipids of membranes, but labeling and visualization of specific lipid classes have yet to be developed for most components of the membrane. New techniques for visualizing membrane lipids are needed to further delineate their dynamic structural and signaling roles in plant cells. In this study we examined whether propargylcholine, a bioortholog of choline, can be used to label the major membrane lipid, phosphatidylcholine, and other choline phospholipids in plants. We established that propargylcholine is readily taken up by roots, and that its incorporation is not detrimental to plant growth. After plant tissue is harvested and fixed, a click-chemistry reaction covalently links the alkyne group of propargylcholine to a fluorescently-tagged azide, resulting in specific labeling of choline phospholipids.ResultsUptake of propargylcholine, followed by click chemistry with fluorescein or Alexa Fluor 594 azide was used to visualize choline phospholipids in cells of root, leaf, stem, silique and seed tissues from Arabidopsis thaliana. Co-localization with various subcellular markers indicated coinciding fluorescent signals in cell membranes, such as the tonoplast and the ER. Among different cell types in the leaf epidermis, guard cells displayed strong labeling. Mass spectrometry-based lipidomic analysis of the various plant tissues revealed that incorporation of propargylcholine was strongest in roots with approximately 50% of total choline phospholipids being labeled, but it was also incorporated in the other tissues including seeds. Phospholipid profiling confirmed that, in each tissue analyzed, incorporation of the bioortholog had little impact on the pool of choline plus choline-like phospholipids or other lipid species.ConclusionWe developed and validated a click-chemistry based method for fluorescence imaging of choline phospholipids using a bioortholog of choline, propargylcholine, in various cell-types and tissues from Arabidopsis. This click-chemistry method provides a direct way to metabolically tag and visualize specific lipid molecules in plant cells. This work paves the way for future studies addressing in situ localization of specific lipids in plants.

Highlights

  • Phospholipids are important structural and signaling molecules in plant membranes

  • Propargylcholine labels choline phospholipids in Arabidopsis seedlings We examined whether choline phospholipids from seedlings can be labeled with the choline bioortholog propargylcholine

  • We found that growing plants in media containing propargylcholine allows this choline bioortholog to be taken up by the roots into aerial plant tissues and incorporated into choline phospholipids within cell membranes

Read more

Summary

Introduction

Phospholipids are important structural and signaling molecules in plant membranes. New techniques for visualizing membrane lipids are needed to further delineate their dynamic structural and signaling roles in plant cells. In this study we examined whether propargylcholine, a bioortholog of choline, can be used to label the major membrane lipid, phosphatidylcholine, and other choline phospholipids in plants. After plant tissue is harvested and fixed, a click-chemistry reaction covalently links the alkyne group of propargylcholine to a fluorescently-tagged azide, resulting in specific labeling of choline phospholipids. Phospholipids are major structural components of cell membranes. These lipids are critical for membrane integrity, as they can form lipid bilayers, but they. The PE methylation pathway is the primary route of synthesis in yeast but plant PC synthesis is derived from both pathways [1, 7]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.