Abstract

Enzymes of the methylerythritol phosphate pathway of isoprenoid biosynthesis are attractive anti-infective drug targets. The last two enzymes of this pathway, IspG and IspH, are [Fe4 S4 ] proteins that are not produced by humans and catalyze 2 H(+) / 2 e(-) reductions with novel mechanisms. In this Review, we summarize recent advances in structural, mechanistic, and inhibitory studies of these two enzymes. In particular, mechanistic proposals involving bioorganometallic intermediates are presented, and compared with other mechanistic possibilities. In addition, inhibitors based on substrate analogues as well as developed by rational design and compound-library screening, are discussed. The results presented support bioorganometallic catalytic mechanisms for IspG and IspH, and open up new routes to anti-infective drug design targeting [Fe4 S4 ] clusters in proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call