Abstract

Bioorganometallic chemistry is now a maturing field attracting researchers around the world, and also across the Periodic Table. It has found applications in a broad range of areas such as drug discovery, biocatalysis and imaging. We review here the first experiments carried out in the early 1980′s at the Ecole Nationale Supérieure de Chimie de Paris under the leadership of Gérard Jaouen, a key figure and visionary in the development of this theme. However, they also required important contributions from Canadian collaborators with expertise in NMR and IR spectroscopy, together with the availability of more powerful and versatile instrumentation. This collaboration found its fulfillment in the demonstration of the use of metal carbonyl complexes (exemplified by an estradiol derivative labeled by a Cr(CO)3 unit) as non-isotopic tracers allowing the detection of estradiol receptors, an essential marker for setting up a targeted therapy for breast cancer. This approach was based on the premise that the intense metal carbonyl stretching vibrations are found in a window (2100–1850 cm−1) where the protein itself does not absorb. The field was extended to the arena of non-isotopic immunoassays, including the simultaneous detection of multiple antiepileptic drugs bearing metal carbonyl labels. More recently, taking advantage of the new technique of atomic force microscopy-infrared spectroscopy (AFM-IR) it has been possible to accomplish direct tracing of these complexes in cells. The contributions of the original group of workers in the field are highlighted, and placed in the perspective of today's subsequent emphasis on the management of previously untreatable cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call