Abstract

The objective of this brief review is to present an overview of the bioorganic chemistry of cyclic-ADP-ribose (cADPR) with special emphasis on the methodology used for the synthesis of analogues of cADPR. New structural analogues of cADPR can be prepared using either the biomimetic method or ADP-ribosyl cyclase from Aplysia californica. For the most part, both procedures give similar product profiles, but higher yields are generally obtained with the enzymatic method. These synthetic methodologies have allowed the transformation of a variety of structurally modified analogues of NAD + into their corresponding cyclic nucleotides. Several of these novel analogues are more potent than cADPR in inducing calcium release and are also more stable towards degradative enzymes. They could serve as valuable affinity probes for the isolation of cADPR-binding proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.