Abstract

Megaloptera belong to a large monophyletic group, the Neuropteroidea, together with Coleoptera, Strepsiptera, Raphidioptera, and Neuroptera. With the latter two, this order constitutes the Neuropterida, a smaller monophyletic subset among which it is the only entirely aquatic group, with larvae of all species requiring submersion in freshwater. Megaloptera is arguably the oldest extant clade of Holometabola with aquatic representatives, having originated during the Permian before the fragmentation of Pangea, since about 230 Ma. It includes 54 genera (35 extant and 19 extinct genera), with 397 extant described species and subspecies. Recent Megaloptera are divided into two families: Corydalidae (with subfamilies Corydalinae—dobsonflies and Chauliodinae—fishflies) and Sialidae (alderflies), both widely yet disjunctively distributed among zoogeographical realms. All species of Megaloptera have aquatic larvae, whereas eggs, pupae, and adults are terrestrial. The anatomy, physiology, and behavior of megalopteran larvae are specialized for an aquatic predatory habit, yet their ecological significance might still be underappreciated, as their role in food webs of benthic communities of many temperate and tropical streams and rivers is still understudied and largely unquantified. In many freshwater ecosystems, Megaloptera larvae are a conspicuous benthic component, important in energy flow, recycling of materials, and food web dynamics.

Highlights

  • The anatomy, physiology, and behavior of megalopteran larvae are specialized for an aquatic predatory habit, yet their ecological significance might still be underappreciated, as their role in food webs of benthic communities of many temperate and tropical streams and rivers is still understudied and largely unquantified

  • Regarding the taxonomic knowledge of the larval stages, mature larvae are described for six genera of Corydalinae (Acanthacorydalis, Chloronia, Corydalus, Neoneuromus, Platyneuromus, and Protohermes), 13 genera of Chauliodinae (Apochauliodes, Archichauliodes, Chauliodes, Dysmicohermes, Madachauliodes, Neochauliodes, Neohermes, Nigronia, Orohermes, Parachauliodes, Platychauliodes, Protochauliodes, and Taeniochauliodes), and seven genera (Austrosialis, Haplosialis, Ilyobius, Indosialis, Leptosialis, Sialis, and Stenosialis) of Sialidae [4,16,17,18]

  • Recent studies suggest that Megaloptera species have existed since the Permian, before the fragmentation of Pangea, with subsequent radiation of Gondwanan and Laurasian elements, represented at present by numerous fossil taxa known from various Mesozoic deposits, many placed in now-extinct families (Table 2) [15,20]

Read more

Summary

An Ancient Holometabolous Order

The order Megaloptera Latreille, 1802, has been traditionally regarded as an ancient holometabolous group [1,2], and arguably includes the oldest known representatives of aquatic insects with complete metamorphosis. They are conceded slight attention by general or applied entomologists, yet aquatic entomologists are aware that they can attain high abundances in particular ecosystems and regions. The family Corydalidae is further divided into two subfamilies: Corydalinae Davis, realms. Megaloptera have aquatic larvae, aquatic larvae, whereas pupae, adults of all species terrestrial Whereas eggs, pupae, and of groups all species are holometabolous terrestrial

Distribution and Diversity
Origin and Fossil Record
Phylogenetic Relationships
Evolution of Ecological Roles
Essential Services for Ecosystem Function
Bronze
Responses to Threats of Water Pollution and Climate Change
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call