Abstract

BackgroundDengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti.MethodsUsing a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomics. Simulations of Ae. aegypti populations for current (1991-2011) and future climate (2046-2065) were conducted for the city of Cairns, Queensland, the population centre with most dengue virus transmission in Australia. Female mosquito abundance, wet weight, and the extrinsic incubation period for dengue virus in these mosquitoes were estimated for current and future climate (MPI ECHAM 5 model, B1 and A2 emission scenarios).ResultsOverall mosquito abundance is predicted to change, but results were equivocal for different climate change scenarios. Aedes aegypti abundance is predicted to increase under the B1, but decrease under the A2 scenario. Mosquitoes are predicted to have a smaller body mass in a future climate. Shorter extrinsic incubation periods are projected.ConclusionsIt is therefore unclear whether dengue risk would increase or decrease in tropical Australia with climate change. Our findings challenge the prevailing view that a future, warmer climate will lead to larger mosquito populations and a definite increase in dengue transmission. Whilst general predictions can be made about future mosquito borne disease incidence, cautious interpretation is necessary due to interaction between local environment, human behaviour and built environment, dengue virus, and vectors.

Highlights

  • Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually

  • A number of studies predicting changes to future disease range and intensity exist, and there is a body of evidence that suggests increased geographic range for dengue virus transmission in a future climate

  • As part of a larger study to understand the impact of future climate change on dengue transmission in Australia, we investigated likely changes to Ae. aegypti bionomics under current and future climate

Read more

Summary

Introduction

Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti. Two point five billion people globally are at risk of dengue virus (DENV) infection, transmitted by Aedes mosquitoes mostly in urban and peri-urban areas. A number of studies predicting changes to future disease range and intensity exist, and there is a body of evidence that suggests increased geographic range for dengue virus transmission in a future climate. Some of these are based on the relationships between climate variables and disease incidence. There are models that describe a positive relationship between notified dengue cases and increasing temperature [3] and humidity [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call