Abstract

Microtubules are dysfunctional in a number of neurological and neuropsychiatric disorders, and there is evidence of their decreased stability. This article critically evaluates the feasibility of introducing microtubules with superior structural properties into dysfunctional brain areas to restore normal microtubule functions such as transport. Various approaches in biotechnology and nanotechnology exist that might be successful in this regard. One strategy is to design artificial tubulin genes, or DNA constructs, with specific point mutations that would subsequently (1) affect polymerization and depolymerization of microtubules, (2) alter posttranslational modifications, or (3) modify binding of microtubule-associated proteins—all in the direction of enhancing overall microtubule stability. Another strategy is to coat or functionalize the surface of microtubules, altering their properties in the direction of enhanced stability. The abnormal functioning of microtubules and their binding proteins is turning out to be a prominent defect found in separate neuronal populations of those diagnosed with Alzheimer’s disease, Parkinson’s disease, schizophrenia, or bipolar disorder. The current treatments for these disorders have met with varying degrees of success, and many of the treatments are associated with serious side effects. Nanotechnology and biotechnology can make significant contributions to the development of future treatments. DNA constructs for novel tubulins and nanoengineered “bionic” microtubules stand to vastly expand the biomedical arsenal of potential treatments aimed at repairing microtubules. Nonetheless, a great deal of research still needs to be done before such goals can be realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.