Abstract

Bioinspired artificial luminescent skin (L-skin) integrated with multiple sensing functions significantly promotes the development of smart devices. It is considerably challenging to realize underwater sensing technologies. Here, a sharkskin-inspired Eu@HOF-TJ-1@TA L-skin (1) is prepared for both temperature and sound sensing. 1 is an ultrathin and flexible temperature sensor, in 298.15-358.15 K, exhibiting ultrahigh maximum relative sensitivity (97.669% K-1 ) and low minimum uncertainty (0.000952 K). The temperature response mechanism is analyzed deeply. As a waterproofing acoustic sensor, 1 can monitor sound in both air and water with the greatest sound response frequencies of 400 and 300Hz in air and water, respectively. The maximum sensitivities of 1 in air and water are 6593765.2 and 1346124.5 cps Pa-1 , respectively. The response times of 1 in air and water are as fast as 20 and 10ms. The sound response processes of 1 in air and water are simulated by finite element simulation. Moreover, by using sharkskin-inspired 1, the actual water temperature can be monitored, and a series of water sound information can be recognized by using an artificial neural network. This work proposes a sharkskin-inspired L-skin for temperature and acoustic sensing and promotes the development of underwater sensing technology with high performances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.