Abstract

AbstractThe triboelectric nanogenerator (TENG) is a promising technology with unique advantages for harvesting environmental high‐entropy energy like wind power. However, inefficient wind energy harvest devices have limited the operating wind speed and practical application of TENGs. In this work, a bionic blade lift‐drag hybrid turbine‐driven triboelectric‐electromagnetic hybrid generator (HT‐TEHG) is designed for broadband wind energy harvesting. The lift‐drag hybrid turbine combines the benefits of drag‐type blades enabling low wind speed start‐up and bionic lift‐type blades generating high torque, achieving an 11% increase in performance. The TENGs are designed with appropriate dielectric layer gaps to balance the output performance and friction torque and are independently driven by two types of blades to achieve self‐adaptive graded power generation at different wind speeds. The starting wind speed of the HT‐TEHG is 2 m s−1 and achieves a peak power of 202.4 mW with an energy conversion efficiency of 9.1% at a wind speed of 4 m s−1. The durability of the TENG is verified by continuous operation for 1 × 105 cycles with almost no performance degradation. Moreover, the HT‐TEHG can power a wireless weather station using natural wind. The study introduces a valuable approach to harvest broadband wind energy and enable distributed power for Internet of Things devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call