Abstract

Here we demonstrate, chitosan–sodium alginate based bionanomaterial scaffolds (BMS) with in situ functionalized alumina hydroxide forming scaffold like structure and its application in removal of fluoride (F–), chromium (Cr(VI)), and dye from water. Further, the bionanomaterial scaffold surface was modified with silver nanoparticles (Ag NPs) to enhance the shelf life of the bionanomaterial scaffold (BMS). This Ag NP-coated BMS exhibited as high as ∼168 and ∼60 mg g–1 fluoride uptake efficiency at pH 4 and 7, respectively. Experiments were also carried out to check the chromium removal efficiency, and results showed ∼8.5 mg g–1 of Cr(VI) uptake capacity was achieved from contaminated water at room temperature. Further, over 99% Reactive Black 5 (RB-5) removal was achieved with remarkable surface regeneration properties. To test the end user affordability, the bionanomaterial was packed both in a columnlike filter cake and tea-baglike pouches in a series of experiments. This study demonstrates a viable and ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.