Abstract
The development of cell-based bioelectronic devices largely depends on the direct control of intracellular redox states. However, most related studies have focused on the accurate measurement of electrical signals from living cells, whereas direct intracellular state control remains largely unexplored. Here, we developed a biocompatible transmembranal bionanohybrid structure composed of a recombinant metalloprotein, DNA, molybdenum disulfide nanoparticles (MoS2), and peptides to control intracellular redox states, which can be used as a cell-based biomemory device. Using the capacitance of MoS2 located inside the cell, the bionanohybrid controled the intracellular redox states of living cells by recording and extracting intracellular charges, which inturn was achieved by activating (writing) and deactivating (erasing) the cells. As a proof of concept, cell-based biomemory functions including writing, reading, and erasing were successfully demonstrated and confirmed via electrochemical methods and patch-clamp analyses, resulting in the development of the first in vitro cell-based biomemory device. This newly developed bionanohybrid provides a novel approach to control cellular redox states for cell-based bioelectronic applications, and can be applicable in a wide range of biological fields including bioelectronic medicine and intracellular redox status regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.