Abstract

The giant anteater (Myrmecophaga tridactyla) can occur in both preserved and anthropogenic environments in Brazilian biomes. The Cerrado biome, where the samples were collected, is considered one of the world’s biodiversity hotspots; however, a large part of it has been converted to pasture and agricultural land. In this environment, animals may be exposed to contaminants, such as mercury (Hg). Despite its immense biodiversity, there are few studies investigating Hg contamination in terrestrial mammals in Brazil. This study aimed to create a baseline for Hg levels in giant anteater fur and establish which biotic and abiotic variables can influence its concentration. Total Hg (THg) concentrations were determined by cold vapor atomic absorption spectrometry in 141 individuals sampled on highways between January and October 2017, in the state of Mato Grosso do Sul, Brazil. THg concentrations in fur ranged from 0.27 to 4.77 μg g −1. The decomposition stage of the carcasses and vehicular traffic volume on highways did not influence the THg concentrations. Juveniles presented lower THg concentrations than adults. A spatial pattern of higher concentrations in the eastern-southeastern region of the state was found, which could be related to anthropogenic impacts; however, no clear links have been established. The THg concentrations in giant anteaters’ fur seems higher than expected considering the trophic position of the species. Despite this, the range was in accordance with studies of other Brazilian terrestrial mammals and within safe threshold levels. This study indicates the potential of utilizing roadkilled fauna to monitor large-scale contamination in wildlife.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.