Abstract

The adsorption of glycine, the building block of amino acids, on hydroxylated (0001)-Cr2O3 model surfaces, representing the stainless steel passive film surface, was modeled by means of the GGA + U method. The roles of glycine coverage and surface termination (hydroxylated Cr- and O-terminated surfaces) on the adsorption mode and self-assembly properties were explored. The hydroxylated Cr-terminated Cr2O3 surface, which presents two types of (H)OH groups exhibiting different acidic character, is more reactive than the hydroxylated O-terminated surface, where one single type of OH group is present, for all adsorption modes and coverages considered. Outer sphere adsorption occurs in the zwitterion form, stabilized at low coverage through H-bond formation with coadsorbed water molecules, and at the monolayer coverage by glycine self-assembling. The OH substitution by glycinate is favored on the hydroxylated Cr-terminated surface and not on the O-terminated one. The inclusion of dispersion forces does not change the observed tendencies. An atomistic thermodynamics approach suggests that outer sphere adsorption is thermodynamically favored over inner sphere adsorption in the whole domain of glycine concentration. The obtained SAM's free energies of formation are rationalized in a model considering the balance between sublimation and solvation free energies, and extrapolated to other amino acids, to predict the SAMs formation above hydroxylated surfaces. It is found that hydrophobic AA tend to self-assemble at the surface, whereas hydrophilic ones do not.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call