Abstract
Various electronic devices, which we commonly use, radiate microwaves. Such external perturbation influences the functionality of biomolecules. In an ultralow field, the cumulative response of a molecule is expected only over a time scale of hours. To study the structural dynamics of biomolecules over hours, we adopt a simple methodology for constructing the coarse-grained structure of the protein molecule and solve the Langevin equation under different working potentials. In this approach, each amino acid residue of a biomolecule is mapped onto a number of beads, a few for the backbone, and few for the side chain, depending on the complexity of its chemical structure. We choose the force field in such a way that the dynamics of the protein molecule in the presence of ultralow radiation field of microvolt/nm could be followed over the time frame of 2 h. We apply the model to describe a biomolecule, hen egg white lysozyme, and simulate its structural evolution under ultralow strength electromagnetic radiation. The simulation revealed the finer structural details, like the extent of exposure of bioactive residues and the state of the secondary structures of the molecule, further confirmed from spectroscopic measurements [details are available in Phys. Rev. E 97, 052416 (2018)10.1103/PhysRevE.97.052416 and briefly described here]. Though tested for a specific system, the model is quite general. We believe that it harnesses the potential in studying the structural dynamics of any biopolymer under external perturbation over an extended time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.