Abstract

Biomolecular piezoelectric materials are considered a strong candidate material for biomedical applications due to their robust piezoelectricity, biocompatibility, and low dielectric property. The electric field has been found to affect tissue development and regeneration, and the piezoelectric properties of biological materials in the human body are known to provide electric fields by pressure. Therefore, great attention has been paid to the understanding of piezoelectricity in biological tissues and its building blocks. The aim herein is to describe the principle of piezoelectricity in biological materials from the very basic building blocks (i.e., amino acids, peptides, proteins, etc.) to highly organized tissues (i.e., bones, skin, etc.). Research progress on the piezoelectricity within various biological materials is summarized, including amino acids, peptides, proteins, and tissues. The mechanisms and origin of piezoelectricity within various biological materials are also covered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.