Abstract
Photoinduced electron transfer in biomolecular photodiode consisting of protein-adsorbed hetero-Langmuir–Blodgett (LB) films was investigated. Four kinds of functional molecules, cytochrome c, viologen, flavin, and ferrocene, were used as a second electron acceptor, a first electron acceptor, an electron sensitizer, and an electron donor, respectively. The hetero-LB film was fabricated by subsequently depositing ferrocene, flavin, and viologen onto the pretreated ITO glass. Cytochrome c-adsorbed hetero-LB films were prepared by soaking the hetero-LB films into the phosphate buffer solution containing cytochrome c. To verify the optimal adsorption conditions of cytochrome c molecules onto the viologen LB layers, the UV-absorption spectrum and atomic force microscopy observations of LB films were performed. Finally, the metal/insulator/metal structured molecular device was constructed by depositing aluminum onto the surface of the cytochrome c-adsorbed hetero-LB films. For photoelectric response properties, the current–voltage characteristic and photoswitching effect of the proposed molecular photodiode were investigated. To verify the charge shift, transient photocurrent of the molecular photodiode was measured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.