Abstract
Biomolecular nuclear magnetic resonance (NMR) spectroscopy and artificial intelligence (AI) have a burgeoning synergy. Deep learning-based structural predictors have forever changed structural biology, yet these tools currently face limitations in accurately characterizing protein dynamics, allostery, and conformational heterogeneity. We begin by highlighting the unique abilities of biomolecular NMR spectroscopy to complement AI-based structural predictions toward addressing these knowledge gaps. We then highlight the direct integration of deep learning approaches into biomolecular NMR methods. AI-based tools can dramatically improve the acquisition and analysis of NMR spectra, enhancing the accuracy and reliability of NMR measurements, thus streamlining experimental processes. Additionally, deep learning enables the development of novel types of NMR experiments that were previously unattainable, expanding the scope and potential of biomolecular NMR spectroscopy. Ultimately, a combination of AI and NMR promises to further revolutionize structural biology on several levels, advance our understanding of complex biomolecular systems, and accelerate drug discovery efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.