Abstract

Biomolecular NMR now contributes routinely to every step in the development of new chemical entities ahead of clinical trials. The versatility of NMR — from detection of ligand binding over a wide range of affinities and a wide range of drug targets with its wealth of molecular information, to metabolomic profiling, both ex vivo and in vivo — has paved the way for broadly distributed applications in academia and the pharmaceutical industry. Proteomics and initial target selection both benefit from NMR: screenings by NMR identify lead compounds capable of inhibiting protein–protein interactions, still one of the most difficult development tasks in drug discovery. NMR hardware improvements have given access to the microgram domain of phytochemistry, which should lead to the discovery of novel bioactive natural compounds. Steering medicinal chemists through the lead optimisation process by providing detailed information about protein–ligand interactions has led to impressive success in the development of novel drugs. The study of biofluid composition — metabonomics — provides information about pharmacokinetics and helps toxicological safety assessment in animal model systems. In vivo, magnetic resonance spectroscopy interrogates metabolite distributions in living cells and tissues with increasing precision, which significantly impacts the development of anticancer or neurological disorder therapeutics. An overview of different steps in recent drug discovery is presented to illuminate the links with the most recent advances in NMR methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call