Abstract

In higher plants, the mitochondrial alternative oxidase (AOX) pathway plays an essential role in maintaining the TCA cycle/cellular carbon and energy balance under various physiological and stress conditions. Though the activation of AOX pathway upon exogenous addition of α-ketoacids/TCA cycle metabolites [pyruvate, α-ketoglutarate (α-KG), oxaloacetic acid (OAA), succinate and malic acid] to isolated mitochondria is known, the molecular mechanism of interaction of these metabolites with AOX protein is limited. The present study is designed to understand the biomolecular interaction of pure recombinant Arabidopsis thaliana AOX1A with TCA cycle metabolites under in vitro conditions using various biophysical and molecular docking studies. The binding of α-KG, fumaric acid and OAA to rAtAOX1A caused conformational change in the microenvironment of tryptophan residues as evidenced by red shift in the synchronous fluorescence spectra (∆λ = 60 nm). Besides, a decrease in conventional fluorescence emission spectra, tyrosine specific synchronous fluorescence spectra (∆λ = 15 nm) and α-helical content of CD spectra revealed the conformation changes in rAtAOX1A structure associated with binding of various TCA cycle metabolites. Further, surface plasmon resonance (SPR) and microscale thermophoresis (MST) studies revealed the binding affinity, while docking studies identified binding pocket residues, respectively, for these metabolites on rAtAOX1A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call