Abstract

Geobacter species are critically involved in elemental biogeochemical cycling and environmental bioremediation processes via extracellular electron transfer (EET), but the underlying biomolecular mechanisms remain elusive due to lack of effective analytical tools to explore into complicated EET networks. Here, a simple and highly efficient cytosine base editor was developed for engineering of the slow-growing Geobacter sulfurreducens (a doubling time of 5 h with acetate as the electron donor and fumarate as the electron acceptor). A single-plasmid cytosine base editor (pYYDT-BE) was constructed in G. sulfurreducens by fusing cytosine deaminase, Cas9 nickase, and a uracil glycosylase inhibitor. This system enabled single-locus editing at 100% efficiency and showed obvious preference at the cytosines in a TC, AC, or CC context than in a GC context. Gene inactivation tests confirmed that it could effectively edit 87.7-93.4% genes of the entire genome in nine model Geobacter species. With the aid of this base editor to construct a series of G. sulfurreducens mutants, we unveiled important roles of both pili and outer membrane c-type cytochromes in long-range EET, thereby providing important evidence to clarify the long-term controversy surrounding their specific roles. Furthermore, we find that pili were also involved in the extracellular reduction of uranium and clarified the key roles of the ExtHIJKL conduit complex and outer membrane c-type cytochromes in the selenite reduction process. This work developed an effective base editor tool for the genetic modification of Geobacter species and provided new insights into the EET network, which lay a basis for a better understanding and engineering of these microbes to favor environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.