Abstract

Cocoonase is a protease secreted during the emergence of silk moths. In the present study cocoonase of Antheraea mylitta was collected, purified and secondary structure was determined using circular dichroism (CD) spectroscopy which revealed the presence of α-helix 4.3%, β-sheet 55%, turn 8% and random coil 32.7%. The thermal stability of cocoonase was studied using CD spectroscopy while the thermal property was observed using Differential Scanning Calorimetry (DSC). Furthermore, MALDI-TOF peptide mass fingerprinting (PMF) was performed for similar protein identification using the MASCOT server. Using casein as the substrate, the kinetic constants Km and Vmax were 13 × 103 mg/ml and 15.09 × 10−2 μg/mg.s1 respectively. The specific activity of cocoonase was observed to be maximum at temperature 40 °C, pH-8.0. The effect of heavy metals Hg2+, Cd2+, Co2+, Pb2+ showed inhibitory activity at higher concentrations, while few metals like Mn2+, Fe3+ enhanced the activity while the effect of Ca2+ was not much on the activity. Soybean trypsin inhibitor and PMSF showed an inhibitory effect on the activity of cocoonase. Additionally, antioxidant scavenging and fibrinolytic properties were also observed. Furthermore, the imperative information generated through the present study will serve to explore cocoonase for its prospective pharmaceutical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call