Abstract

Patterned surfaces of marine-derived carbon scaffolds were subjected to a biomimetic approach to be covered with a calcium phosphate thin film. The process was based on Dulbecco’s phosphate-buffered saline solution and investigated in different periods of immersion (from hours to days). A complete physicochemical characterization was performed to demonstrate the optimal calcium/phosphorus ratio, thickness and adherence to the substrate of these biomimetic calcium phosphate coatings, which still retained the naturally derived patterning. A chemical mechanism to explain the coating formation has been proposed and documented, based mainly on the presence of carboxylic groups on the C-scaffold surface, what promoted the anchorage of calcium ions at the first stage and the later binding of phosphate groups to calcium ions. The biological response of MC3T3-E1 preosteoblasts on the calcium phosphate–coated scaffolds was investigated to demonstrate the non-cytotoxicity, adequate morphology and spreading of cells after 7 d of culture, being this proliferation aligned, promoted by the patterning of the scaffold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call