Abstract

The microfacies of Pleistocene calcareous crust in Tunisia revealed the presence of diverse aspects of acicular crystallizations in a porous system. These crystallizations are in the shape of branched filaments, mono or polycrystalline rods which are either smooth or serrated (calcite), and serrated edge needle (calcium oxalate). The genesis of these acicular structures seems to be directly or indirectly linked to the organic activity. In fact, the facies are tied to the biological activity or biochemical interactions, which occur between living organisms and the mineral (calcite), triggering a succession of precipitation and dissolution reactions. These reactions, which are characteristic of vadose environments, have actively contributed to the endurance of calcareous crusts due to premature or delayed diagenesis. The acicular calcite, found in the Tunisian Pleistocene calcretes, reflects regional climates that influence the form and mineralogy of needle fiber calcite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.