Abstract

Proppant is a key material, which can increase the production of unconventional petroleum and gas. Excellent proppants with a long migration distance are required in the fracture network. Resin-coated proppants have been confirmed as a good choice because of the long migration and the self-suspending ability in fracturing fluids. However, the distribution of the resin-coated proppants in fracture networks is random. The design of proppants with targeted adsorption is urgently needed. In this study, a novel proppant coated with a phenolic resin shell doped with Fe3O4 nanoparticles on ceramic (coated proppant) was designed and investigated. Based on the results, the coated proppant was adsorbed on the magnetic component’s parts of the fracture network surface, which helps in enhancing the uniform distribution of the proppant in the fracture rock cracks. Meanwhile, the self-suspending ability of the coated proppant is five times higher than that of the uncoated proppant and can migrate a longer distance in the fracture network. Moreover, the liquid conductivity of the coated proppant is 30% higher than that of the uncoated ones at a closure pressure of 6.9 MPa. In summary, new insights into the design of functional proppants and further guidelines on the production of unconventional petroleum and gas have been provided in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.