Abstract

This study developed an epoxy-type biomimic zwitterionic copolymer, poly(glycidyl methacrylate) (PGMA)-poly(sulfobetaine acrylamide) (SBAA) (poly(GMA-co-SBAA)), to modify the surface of polyamide elastic fabric using a hydroxylated pretreatment zwitterionic copolymer and dip-coating method. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy confirmed successful grafting, while scanning electron microscopy revealed changes in the surface pattern. Optimization of coating conditions included controlling reaction temperature, solid concentration, molar ratio, and base catalysis. The modified fabric exhibited good biocompatibility and anti-biofouling performance, as evidenced by contact angle measurements and evaluation of protein adsorption, blood cell, and bacterial attachment. This simple, cost-effective zwitterionic modification technology has high commercial value and is a promising approach for surface modification of biomedical materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call