Abstract
Fabrication of ultra-strong, ultra-tough, sustainable, and degradable bio-based composites is urgently needed but remains challenging. Here, a biomimetic sustainable, degradable, and multi-stimuli responsive cellulose/PCL/Fe3O4 composite with ultra-strong mechanical strength and ultra-high toughness was developed. To prepare the proposed composites, the soft poly(ε-caprolactone) (PCL) side chain was grafted onto the rigid cellulose backbone, then the cellulose graft copolymer (EC-g-PCL) reacted with rigid hexamethylenediamine modified Fe3O4 nanoparticle (Fe3O4-NH2) to construct the crosslinking network using MDI-50 as a crosslinker. Given by the construction of crosslinking network and the “hard” and “soft” interactive structure, the composites showed ultra-strong mechanical strength (25.7 MPa) and ultra-high toughness (107.0 MJ/m3), and the composite specimen could lift a weight of approximately 21,200 times its mass. The composites also exhibited rapid degradation ability with high degradation efficiency. In addition, the composites showed excellent thermal responsive shape memory property with a shape recovery ratio above 96 %. Most importantly, the Fe3O4 nanoparticles endowed the composites with photothermal conversion property, the composites exhibited superior NIR light-triggered shape memory capability. The EC-g-PCL/Fe3O4 composites with ultra-strong mechanical strength and ultra-high toughness have promising applications in heavy-lift, object transportation, and self-tightening knots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.