Abstract

The accurate diagnosis and treatment of prostate cancer at an early stage is crucial to reduce mortality rates. However, the limited availability of theranostic agents with active tumor-targeting abilities hinders imaging sensitivity and therapeutic efficiency. To address this challenge, we have developed biomimetic cell membrane-modified Fe2O3 nanoclusters implanted in polypyrrole (CM-LFPP), achieving photoacoustic/magnetic resonance dual-modal imaging-guided photothermal therapy of prostate cancer. The CM-LFPP exhibits strong absorption in the second near-infrared window (NIR-II, 1000-1700 nm), showing high photothermal conversion efficiency of up to 78.7% under 1064 nm laser irradiation, excellent photoacoustic imaging capabilities, and good magnetic resonance imaging ability with a T2 relaxivity of up to 48.7 s-1 mM-1. Furthermore, the lipid encapsulation and biomimetic cell membrane modification enable CM-LFPP to actively target tumors, leading to a high signal-to-background ratio of ~30.2 for NIR-II photoacoustic imaging. Moreover, the biocompatible CM-LFPP enables low-dose (0.6 W cm-2) photothermal therapy of tumors under 1064 nm laser irradiation. This technology offers a promising theranostic agent with remarkable photothermal conversion efficiency in the NIR-II window, providing highly sensitive photoacoustic/magnetic resonance imaging-guided prostate cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call