Abstract

Artificial membranes that are sensitive to temperature are needed in robotics to augment interactions with humans and the environment and in bioengineering to improve prosthetic limbs. Existing flexible sensors achieved sensitivities of <100 millikelvin and large responsivity, albeit within narrow (<5 kelvin) temperature ranges. Other flexible devices, working in wider temperature ranges, exhibit orders of magnitude poorer responses. However, much more versatile and temperature-sensitive membranes are present in animals such as pit vipers, whose pit membranes have the highest sensitivity and responsivity in nature and are used to locate warm-blooded prey at distance. We show that pectin films mimic the sensing mechanism of pit membranes and parallel their record performances. These films map temperature on surfaces with a sensitivity of at least 10 millikelvin in a wide temperature range (45 kelvin), have very high responsivity, and detect warm bodies at distance. The produced material can be integrated as a layer in artificial skin platforms and boost their temperature sensitivity to reach the best biological performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.