Abstract
Biogenic purine crystals can function in vision as light scatters, mirrors, and multilayer reflectors and produce structural colors or depolarization for camouflage. Xanthine crystals form irregular multifocal mirrors in the median ocellus of Archaeognatha. It is important to broaden the study of crystallization strategies to obtain organic crystals with purine rings in the laboratory. In this work, a facile one-step synthesis route to fabricate bio-inspired xanthine crystals is reported for the first time. The obtained rhomboidal xanthine nanoplates have similar morphology and size to biogenic xanthine crystals. Their length and thickness are about 2-4 μm and 50 nm, respectively. Lattice parameters, crystal structure, formation mechanism and optical properties of synthetic single-crystalline xanthine nanoplates were investigated in detail in this work. The obtained xanthine nanoplate crystals are proposed to be anhydrous xanthine with monoclinic symmetry, and the xanthine nanoplates mainly expose the (100) plane. It is proposed that the anhydrous xanthine nanoplates are formed via an amorphous xanthine intermediate precursor. The synthetic anhydrous xanthine nanoplates exhibit excellent optical properties, including high diffuse reflectivity, strong depolarization and pearlescent luster. This work provides a new design to synthesize bio-inspired organic molecular crystals with excellent optical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.