Abstract

A novel and efficient mesoporous nano-absorbent for U(VI) removal was developed through an environment-friendly route by inducing the biomimetic mineralization of hydroxyapatite (HAP) on the bioinspired surface of polydopamine-graphene oxide (PDA-GO). PDA-GO/HAP exhibited the greatly rapid and efficient U(VI) removal within 2 min, and much higher U(VI) adsorption capacity of 433.07 mg·g-1 than that of GO and PDA-GO. The enhanced adsorption capacity was mainly attributed to the synergistic effect of O-H, -C=N-, and PO43- functional groups and the incorporation of uranyl ions by the formation of a new phase (chernikovite, H2(UO2)2(PO4)2·8H2O). The adsorption process of U(VI) fitted well with pseudo-second-order kinetic and Langmuir isotherm model. Moreover, PDA-GO/HAP showed a high U(VI) adsorption capacity in a broad range of pH values and owned good thermal stability. PDA-GO/HAP with various excellent properties made it a greatly promising adsorbent for extracting uranium. Our work developed a good strategy for constructing fast and efficient uranium-adsorptive biomimetic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call