Abstract

In this work, we report a biomimetic synthesis route of 3D Ag nanofilm/glasswing butterfly wing hybrids (Ag-G.b.) by magnetron sputtering technology. The 3D surface-enhanced Raman scattering (SERS) substrate is fabricated from an original chitin-based nanostructure, which serves as a bio-scaffold for Ag nanofilms to be coated on. The novel crisscrossing plate-like nanostructures of 3D Ag-G.b. nanohybrids with thick Ag nanofilms provide a substantial contribution to SERS enhancement. Measuring the SERS performance with crystal violet (CV), the Ag-G.b. nanohybrids with the sputtering time of 20 min (Ag-G.b.-20) shows the highest enhancement performance with an enhancement factor (EF) of up to 2.96 × 107. The limit of detection (LOD) for CV was as low as 10−11 M, demonstrating the ultrahigh sensitivity of the Ag-G.b.-20 substrate. In addition, the Ag-G.b.-20 substrate has an outstanding reproducibility across the entire area with the maximum value of relative standard deviation (RSD) of less than 10.78%. The nanohybrids also exhibit a long-term stability regarding Raman enhancement, as suggested by a duration stability test over a period of 60 days. Importantly, the high-performance Ag-G.b.-20 substrate is further applied as an ultra-sensitive SERS platform for the trace detection of acephate, showing its great potential application in biochemical sensing and food security.

Highlights

  • Surface-enhanced Raman scattering (SERS), an extension of conventional Raman spectroscopy, is a powerful analytical spectroscopy technique that can achieve single-molecule detection and provide high-resolution “fingerprint” spectral information [1,2]

  • When incident light interacts with the free conduction electrons near the metallic plasmonic nanostructures, the collective oscillation of these electrons is significantly enhanced at metal–dielectric interfaces, which is known as localized surface plasmon resonance (LSPR)

  • We can observed that the surface of G.b. wings consists of interlaced vertical nanoplates with an average width of 30 ± 5 nm and an average length of 300 ± 20 nm

Read more

Summary

Introduction

Surface-enhanced Raman scattering (SERS), an extension of conventional Raman spectroscopy, is a powerful analytical spectroscopy technique that can achieve single-molecule detection and provide high-resolution “fingerprint” spectral information [1,2]. We adopt a highly efficient route (as shown in Figure 1) using biomimetic synthesis to fabricate 3D Ag nanofilm/glasswing butterfly wing (Ag-G.b.) hybrids as SERS substrates.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.