Abstract

Marine biofouling is a ubiquitous problem that accompanies human marine activities and marine industries. It exerts detrimental impacts on the economy, environment, ecology, and safety. Traditionally, mainstream approaches utilize metal ions to prevent biological contamination, but this also leads to environmental pollution and damage to the ecosystem. Efficient and environmentally friendly coatings are urgently needed to prevent marine devices from biofouling. Since nature is always the best teacher for humans, it offers us delightful thoughts on the research and development of high-efficiency, broad-spectrum and eco-friendly antifouling coatings. In this work, we focus on the research frontier of marine antifouling coatings from a bionic perspective. Enlightened by three distinctive dimensions of bionics: chemical molecule bionic, physiological mechanism bionic, and physical structure bionic, the research status of three main bioinspired strategies, which are natural antifoulants, bioinspired polymeric antifouling coatings, and biomimetic surface microtopographies, respectively, are demonstrated. The antifouling mechanisms are further interpreted based on biomimetic comprehension. The main fabrication methods and antifouling performances of these coatings are presented along with their advantages and drawbacks. Finally, the challenges are summarized, and future research prospects are proposed. It is believed that biomimetic antifouling strategies will contribute to the development of nontoxic antifouling techniques with exceptional repellency and stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call