Abstract

A unique combination of surface chemistry and self-assembly of amphiphilic block copolymers was employed to obtain—for the first time—solid-supported biomimetic polymer bilayers. An organized monolayer from sulfur-functionalized poly(butadiene)-b-poly(ethylene oxide) was covalently attached to ultrasmooth gold upon Langmuir-Blodgett transfer. Hydrophobic interactions, on the other hand, were exploited to attach the second monolayer. As a result, we obtained a homogeneous hydrophilic-hydrophobic-hydrophilic structure, similar to supported lipid bilayers by architecture, stability and fluidity. Our polymer bilayers, however, outperform such lipid membranes with regard to tunability of thickness and stability in gaseous environments. As characterized by surface analysis tools (AFM, SPR), solid-supported polymer membranes are smooth with a thickness of ca. 11 nm, resistant to rinsing with aqueous solutions and stable upon drying and rehydration. These properties could be attractive for nanotechnological applications, such as immobilization of functional molecules or nanoparticles, sensor development or preparation of chemically responsive functional surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.