Abstract

Solar optothermal evaporation of water possesses the potential for thermal regulation and electricity generation, which are desirable for regulating body perspiration and heat as well as improving electrical output and strain sensing. However, ordinary fabrics exhibit poor evaporation capacity and antifouling performance due to limited adsorption capacity and internal hydrophilicity. Moreover, conventional evaporation-driven generators show a low power supply without widely practical use due to limited and fluctuating evaporation rates. Herein, an antifouling cooling fabric with an evaporation-driven electricity performance is obtained by constructing Janus channels on the superomniphobic fabric. Sweat can be easily eliminated from inside to outside through Janus channels by efficient evaporation, and the green liquid metal ink (CGM/LMP-rGO@PPy) cotton fabric shows a thermal conductivity of 0.18 W m-1 K-1, suggesting a comfortable dry and cooling sense. Meanwhile, the fabric can stably output a potential of 302.20 mV when seawater flows through the ionic channels at an evaporation rate of 1.58 mL h-1 with one sun power density. In addition, the multifunctional fabric demonstrates strain sensing at high electrical conductivity for body motion monitoring. This work would offer a prospect for intelligent textile construction and energy harvesting by water evaporation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call