Abstract
A biomimetic extraction technique using solid-phase microextraction (SPME) fibers has been developed for the risk assessment of contaminants with a narcotic mode of action. Our goal is to apply this technique in the future for the prediction of total baseline toxicity of environmental water and effluent samples. Validation of this method requires establishing the relationship between contaminant accumulation and toxicity in biota and accumulation in the surrogate solid phase (the SPME fiber coating). For this purpose, we determined the median lethal concentration (LC50) values for Chironomus riparius midge larvae exposed to two halogenated aromatic compounds separately and measured body residues in the exposed larvae. Solid-phase microextraction fibers with an 85-microm polyacrylate (PA) coating served as the surrogate hydrophobic phase, mimicking the uptake of the compounds by midge larvae. The toxicant concentrations in SPME fibers measured directly by gas chromatography/mass spectrometry (GC-MS) or calculated from the SPME fiber-water partition coefficient, K(SPME) were related to the toxicant concentrations found in midge larvae. Our results demonstrated that the biomimetic SPME method enables the estimation of body residues in biota and prediction of the degree of baseline toxicity of a water medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.