Abstract
The purpose of our study is to prepare a biomimetic porous silk fibroin (SF)/biphasic calcium phosphate (BCP) scaffold, and evaluate its performance in bone tissue regeneration. The differences in pore size, porosity, mechanical strength and biocompatibility of four different fibroin-containing scaffolds (0, 20, 40, and 60% SF) were studied in vitro. After inoculation with MC3T3-E1 cells, the ectopic bone formation ability of the SF/BCP bionic scaffold was evaluated in a rat model. The SEM and CT demonstrated that compared with pure BCP group (0% SF), the pore size and porosity of SF/BCP scaffolds were proportional to SF content, of which 40% of SF and 60% of SF groups were more suitable for cell growth. The compressive strength of SF/BCP scaffold was greater than that of the pure BCP scaffold, and showed a trend of first increasing and then decreasing with the increase of SF content, among which 40% of SF group had the maximum compressive strength (40.80 + 0.68) MPa. The SF/BCP scaffold had good biocompatibility, under the electron microscope, the cells can be smoothly attached to and propagated on the scaffold. After loading the osteoblasts, it showed excellent osteogenic capacity in the rat model. The SF/BCP scaffold can highly simulate the micro-environment of natural bone formation and can meet the requirements of tissue engineering. The SF/BCP biomimetic porous scaffold has excellent physical properties and biocompatibility. It can highly simulate the natural bone matrix composition and microenvironment, and can promote the adhesion and proliferation of osteoblasts. The SF/BCP scaffold has good ectopic osteogenesis after loading with osteoblasts, which can meet the requirements of scaffold materials in tissue engineering, and has broad application prospects in clinical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.