Abstract

Transcatheter aortic valve replacement (TAVR) technology is quickly advancing in clinic, however, as it expands to low-risk populations and younger patients (age <65 years), device durability is becoming a major challenge. Tissue-engineered heart valves (TEHVs) are a potential alternative. In this study, a bionic tri-layer tissue-engineered heart valve was constructed using poly (L-lactate-co-ε-caprolactone) (PLCL), gelatin (GEL), hyaluronic acid (HA) and silk fibroin (SF), to simulate the fibrosa, spongiosa and ventricular layer of natural heart valves. To obtain a scaffold with sufficient strength and regenerative capacity, we optimized the ratio of components of each layer. The physical and mechanical properties were tested, and the cytocompatibility, calcification deposition and regeneration potential were tested in a rat model of subcutaneous implantation. Finally, the hydrodynamic function of the new TAVR device was verified. The results demonstrated that the strength of the tri-layer valve could reach up to 10 MPa, significantly higher than that of the PLCL and mono-layer groups. Most importantly, calcification related gene expression was down-regulated in the TEHV groups compared to valvular interstitial cells (VICs) treated with calcification induced medium, and calcification levels of TEHVs in in vivo assay were below 0.5 μg mg-1. Besides, we found HA in the middle layer was very conducive to rapid cell infiltration and good angiogenesis, which ultimately promoted host tissue regeneration at 8 weeks after implantation. Collectively, we provide a bionic tri-layer electrospun leaflet with appropriate mechanical strength, low calcification and good regenerative capacity, which has great potential as a TEHV leaflet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.