Abstract

Flexible and thermally stable polyimide (PI) films containing a hierarchical surface structure were synthesized as substrates to support visible-light active cuprous oxide for photocatalytic reduction of carbon dioxide for the first time. With the nanocasting technique, the surface structure on the leaves of Xanthosoma sagittifolium was successfully duplicated on PI films. Followed by the ion-exchange process and adequate thermal treatment, cuprous oxide nanoparticles were successfully immobilized on the artificial PI leaves and exhibited the capability to photoreduce carbon dioxide into carbon monoxide under visible-light illumination. With the selection of biomimetic structures and adjustment of fabrication parameters, the hydrophobicity and optical absorption edge of the photocatalytic film were tunable. An increase in hydrophobicity improved the yield of carbon monoxide. The introduction of a hierarchical structure on the surface and cuprous oxide within the matrix dramatically enhanced the thermal st...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.