Abstract

Poly (glycerol sebacate) (PGS) is a synthetic polymeric material with the characteristics of controllable degradation, high plasticity and excellent biocompatibility. However, the time of PGS degradation is faster than that of cartilage regeneration, which limits its application in cartilage tissue engineering. Polycaprolactone (PCL), a widely used synthetic polymer, has appropriate biodegradability and higher mechanical strength. This study aims to make a scaffold from blends of fast degrading PGS and slowly degrading PCL, and to investigate its potential for cartilage tissue engineering applications. Scanning electron microscopic analysis indicated that the scaffolds provided favourable porous microstructures. In vitro degradation test showed that PGS/ PCL scaffolds acquired longer degradation time and better mechanical strength. PGS/PCL scaffolds seeded with Bone marrow-derived mesenchymal stem cells (BMSCs) and articular chondrocytes (ACCs) were cultured in vitro. Short-term in vitro experiments confirmed that both seeded cells could adhere and proliferate on the scaffold. Chondrogenic culture for cell-scaffold constructs confirmed BMSCs could differentiate into chondrocyte-like cells in PGS/PCL scaffolds. With tunable biodegradation, favorable mechanical properties and cytocompatibility, PGS/PCL scaffolds would potentially be suitable for the regeneration of cartilage tissue. Poly (glycerol sebacate) (PGS) is a synthetic polymeric material with the characteristics of controllable degradation, high plasticity and good biocompatibility. However, the time of PGS degradation is faster than that of cartilage regeneration, which limits its application in cartilage tissue engineering. Polycaprolactone(PCL), a widely used synthetic polymer, has appropriate biodegradability. This study aims to make a scaffold from blends of fast degrading PGS and slowly degrading PCL, and to investigate its potential for cartilage tissue engineering applications. Scanning electron microscopic analysis indicated that the scaffolds provided favourable porous microstructures. In vitro degradation test showed that PGS/ PCL scaffolds got longer degradation time with surface degradation nature. PGS/PCL scaffolds seeded with Bone marrow-derived mesenchymal stem cells (BMSCs) and articular chondrocytes (ACCs) were cultured in vitro under the same condition. Short-term in vitro experiments confirmed that both seed cells could adhere and proliferate on the scaffold. Chondrogenic culture for cell-scaffold constructs confirmed BMSCs could differentiate into chondrocyte-like cells and form cartilage-specific matrix in PGS/PCL scaffolds. With cytocompatibility and biodegradation profile, PGS/PCL scaffolds get great potential for cartilage tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.