Abstract

Photothermal therapy (PTT) using nanoparticles is one of the research hotspots in the field of cancer therapy. However, the thermal resistance of tumor cells and the elimination of nanoparticles by the body's immune system reduce their therapeutic effect. Therefore, it is essential to reduce heat resistance, improve their biocompatibility, and reduce the clearance of the immune system. In this work, we constructed a biomimetic platform for cancer therapy based on heat shock protein (HSP) inhibitors, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG))-loaded and platelet membrane (PM)-coated mesoporous platinum nanoparticles (MPNPs). First, MPNPs with the properties of chemotherapy and PTT were synthesized to load 17-DMAG (17-DMAG/MPNPs). Then, they were coated with PM for tumor targeting and improved biocompatibility to obtain the final bionic nanotherapy platform 17-DMAG/MPNPs@PM. The results in vivo and in vitro showed that 17-DMAG/MPNPs@PM could accumulate in the tumor and effectively inhibit the growth of tumor cells. Therefore, the biomimetic nanotherapy system is expected to provide new ideas for cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call