Abstract

A biomimetic ion-responsive single nanopore sensor was constructed by immobilizing zirconium(IV) ion on a film of poly(ethylene terephthalate) whose surface was modified with polyethyleneimine (PEI) to form nanopores. PEI is an excellent metal-chelating ligand that was initially modified on the surface of the membrane through amidation. The Zr-chelated nanopore responds to inorganic phosphate by a change in the ion current–voltage plot. This is due to a reversal of the charge from positive to negative after binding of the phosphate to the tip of the ion channel. Inorganic phosphate can be quantified by measurement of the extent of rectification. The limit of detection of the method is 118 nM, and response is linear in the 0 to 40 μM phosphate concentration range. The formation of the Zr(IV)/phosphate system on the surface was corroborated by X-ray photoelectron spectroscopy and current–voltage characterization. The single synthetic nanopore display excellent selectivity, high sensitivity and a wide response range for phosphate. The accuracy of the method and applicability of the nanopore-based detection scheme was proven by the successful determination of inorganic phosphate in (spiked) lake water and a cola drink.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call