Abstract

The effect of ionic strength and pH on phosphatidylcholine (PC) adsorption from vesicles on silica nanoparticles was investigated over a range of NaCl concentrations (0.1-150 mM) at pH 6.3 and 7.4 from determination of adsorption isotherms, colloid stability, particle sizing, and zeta-potentials. At and above 10 mM ionic strength, pH 6.3, high-affinity adsorption isotherms with limiting adsorption indicative of one-bilayer deposition on each silica particle were obtained. At 10 mM ionic strength, adsorption isotherms indicated lower affinity between PC and silica at pH 7.4 than at pH 6.3, suggesting a role of hydrogen bonding between silanol on silica and phosphate on PC in promoting bilayer deposition at low pH. Under conditions where high affinity and bilayer deposition were achieved, silica sedimentation documented from photographs was absent, suggesting particle stabilization induced by bilayer coverage. However, at physiological (150 mM NaCl) or close to physiological ionic strength (140 mM NaCl), the large colloid stability similarly achieved at pH 6.3 or 7.4 suggested the major role of van der Waals attraction between the PC bilayer vesicle and silica particle in determining bilayer deposition. The effect of increasing ionic strength was increasing van der Waals attraction, which caused PC vesicle disruption with bilayer deposition and bilayer-induced silica stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.