Abstract

Biomimetic poly(amidoamine)-poly(benzyl L-glutamate) (PAMAM-PBLG) amphiphiles with multi-armed architecture were synthesized by the ring-opening polymerization (ROP) of beta-benzyl-L-glutamate N-carboxyanhydride (BLG-NCA) using primary amine-terminated PAMAM dendrimer as the macroinitiator. Both (1)H NMR and (13)C NMR demonstrated that all the primary amines of PAMAM participated in initiating the ROP of BLG-NCA monomer, and the chain length of PBLG can be adjusted linearly by the molar ratio of BLG-NCA monomer to PAMAM. These multi-armed PAMAM-PBLG amphiphiles exhibited both alpha-helix and beta-sheet conformations similar to linear analogues, while their multi-armed architecture could enhance the secondary conformation content of PBLG segments. Meanwhile, the PAMAM-PBLG amphiphiles showed weaker liquid crystalline textures than the linear analogues. Moreover, spherical nanoparticles could be generated by direct injection of these PAMAM-PBLG solutions into distilled water, and their average size (38 - 275 nm) could be adjusted through the multi-armed architecture, the PBLG composition, and the concentration of the amphiphiles. These nanoparticles were stable in aqueous solution for up to 64 days at room temperature and 16 days at 37 degrees C. Consequently, this will provide a convenient method not only to synthesize multi-armed polypeptides amphiphiles, but also to generate biodegradable and biocompatible nanoparticles with adjustable size for drug/gene release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.