Abstract
One of the long-term goals in developing advanced biomaterials is to generate protein-like nanostructures and functions from a completely nonnatural polymer. Toward that end, we introduced a high-affinity zinc-binding function into a peptoid (N-substituted glycine polymer) two-helix bundle. Borrowing from well-understood zinc-binding motifs in proteins, thiol and imidazole moieties were positioned within the peptoid such that both helices must align in close proximity to form a binding site. We used fluorescence resonance energy transfer (FRET) reporter groups to measure the change of the distance between the two helical segments and to probe the binding of zinc. We systematically varied the position and number of zinc-binding residues, as well as the sequence and size of the loop that connects the two helical segments. We found that certain peptoid two-helix bundles bind zinc with nanomolar affinities and high selectivity compared to other divalent metal ions. Our work is a significant step toward generating biomimetic nanostructures with enzyme-like functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.