Abstract

Due to the high recurrence rate and mortality of venous thrombosis, there is an urgent need for research on antithrombotic strategies. Because of the short half-life, poor targeting capabilities, bleeding complications, and neurotoxic effects of conventional pharmacological thrombolysis methods, it is essential to develop an alternative strategy to noninvasive thrombolysis and decrease the recurrence rate of venous thrombosis. A platelet-mimetic porphyrin-based covalent organic framework-engineered melanin nanoplatform, to target delivery of hirudin to the vein thrombus site for noninvasive thrombolysis and effective anticoagulation, is first proposed. Owing to the thrombus-hosting properties of platelet membranes, the nanoplatform can target the thrombus site and then activate hyperthermia and reactive oxygen species for thrombolysis under near-infrared light irradiation. The photothermal therapy/photodynamic therapy combo can substantially improve the effectiveness (85.7%) of thrombolysis and prevent secondary embolism of larger fragments. Afterward, the highly loaded (97%) and slow-release hirudin (14 days) are effective in preventing the recurrence of blood clots without the danger of thrombocytopenia. The described biomimetic nanostructures offer a promising option for improving the efficacy of thrombolytic therapy and reducing the risk of bleeding complications in thrombus associated diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call