Abstract

AbstractpH‐gated ion channels in cell membranes play important roles in the cell's physiological activities. Many artificial nanochannels have been fabricated to mimic the natural phenomenon of pH‐gated ion transport. However, these nanochannels show pH sensitivity only within certain pH ranges. Wide‐range pH sensitivity has not yet been achieved. Herein, for the first time, we provide a versatile strategy to increase the pH‐sensitive range by using dual amphoteric nanochannels. In particular, amphoteric polymeric nanochannels with carboxyl groups derived from a block copolymer (BCP) precursor and nanochannels with hydroxyl groups made from anodic alumina oxide (AAO) were used. Due to a synergistic effect, the hybrid nanochannels exhibit nanofluidic diode properties with single rectification direction over a wide pH range. The novel strategy presented here is a scalable, low‐cost, and robust alternative for the construction of large‐area membranes for nanofluidic applications, such as the separation of biomolecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call