Abstract

DNA materials have emerged as potential nanocarriers for targeted cancer therapy to precisely deliver cargos with specific purposes. The short half-life and low bioavailability of DNA materials due to their interception by the reticuloendothelial system and blood clearance further limit their clinical translation. This study employs an HER2-targeted DNA-aptamer-modified DNA tetrahedron (HApt-tFNA) as a drug delivery system, and combines maytansine (DM1) to develop the HApt-DNA tetrahedron/DM1 conjugate (HApt-tFNA@DM1, HTD, HApDC) for targeted therapy of HER2-positive cancer. To optimize the pharmacokinetics and tumor-aggregation of HTD, a biomimetic camouflage is applied to embed HTD. The biomimetic camouflage is constructed by merging the erythrocyte membrane with pH-responsive functionalized synthetic liposomes, thus with excellent performance of drug delivery and tumor-stimulated drug release. The hybrid erythrosome-based nanoparticles show better inhibition of HER2-positive cancer than other drug formulations and exhibit superior biosafety. With the strengths of precise delivery, increased drug loading, sensitive tumor probing, and prolonged circulation time, the HApDC represents a promising nanomedicine to treat HER2-positive tumors. Notably, this study developsa dual-targeting nanoparticle by combining pH-sensitive camouflage and HApDC, initiating an important step toward the development and application of DNA-based medicine and biomimetic cell membrane materials in cancer treatment and other potential biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call