Abstract

This paper describes the use of glass and mesoporous silica microspheres (typically 1−50 μm) as supports for biomimetic lipid bilayer membrane architectures for use in biotechnological applications. We present methods and characterization of lipid bilayer membranes supported on commercially available glass beads and mesoporous silica beads formed by an aerosol process that takes advantage of self-assembly of surfactant template phases in sol−gel synthesis. Methods for controlling the concentration of fluorescent lipids, ligands, receptors, and transmembrane proteins in the bead-supported bilayer assemblies are discussed, along with methods for measuring the concentration of these species using flow cytometry. Diffusion of molecular species both within the lipid bilayer and within the mesoporous bead structure is probed using fluorescence recovery after photobleaching. Flow cytometry and confocal fluorescence microscopy are used to examine dye uptake of the porous beads and the stability of the encapsulati...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.