Abstract
Osmotic power generation is a renewable energy technology that harnesses energy from the natural mixing of freshwater and saltwater, offering a promising solution for sustainable energy. However, it is still a challenge to achieve high energy output without compromising scalability and stability. Herein, inspired by the nano-constrained dynamics of neuronal cell transmembrane transport, an anodic oxidation electrodeposition method is employed to fabricate metal organic frameworks (MOFs) within 2D graphene oxide (GO) layers. The in-situ integration of high-density charges within nanometer pore with 0.34 nm entrance of MOFs facilitates rapid and selective cation transport, which significantly increases the diffusion voltage (363.8 mV, 106 fold concentration gradient). Our device demonstrates a maximum output power of 6.82 μW under a 10 fold concentration gradient at a load resistance of 5000 Ω, possessing an energy conversion efficiency of 48.8% at an effective area of 12.56 mm2, which substantially surpasses the performance reported before. More importantly, the device performs exceptionally well, showing robust and stable performance. This is proven by its ability to power various electronic devices. These findings underscore the potential of biomimetic ion channel membranes in sustainable energy applications, offering a promising avenue for the broader field of energy harvesting technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.