Abstract

The aim of this study was to investigate the biomimetic mineralization on the surface of a glass fiber reinforced composite with partially resorbable biopolymer matrix. The E-glass fibers were preimpregnated with a novel biopolymer of poly(hydroxyproline) amide, and further impregnated in the monomer system of bis-phenyl glycidyl dimethacrylate (Bis-GMA)--triethylene glycol dimethacrylate (TEGDMA), which formed interpenetrating polymer networks (IPN) with the preimpregnation polymer. After light-initiated polymerization of the monomer system, the rhombic test specimens (n = 6) were immersed in the simulated body fluid (SBF) with the bioactive glass for 24 h, and then the apatite nuclei were allowed to grow for 1, 3, 5 and 7 days in the SBF. The control test specimens (n = 3) were immersed in SBF without the bioactive glass. According to the scanning electron microscope (SEM), a mineral layer was formed on the surface of all the specimens, which were immersed with bioactive glass. The layer was thickened by the prolonged immersion time to a uniform layer. The Ca/P atomic ratio of the mineral varied between 1.30 and 1.54 as analyzed by the energy dispersive X-ray analysis (EDXA). The Fourier transform infrared spectroscopy (FT-IR) spectra gave signals for the mineral, which are characteristic of both bone-like apatite and orthocalciumphosphate. In conclusion, the mineral layer was formed on the surfaces of the specimens by biomimetic mineralization, the mineral being a mixture of bone-like apatite, orthocalciumphosphate and other calcium phosphates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.